Skip to main content

Animesh Garg

Data for Robot Manipulation

Part 2: In his equally interesting follow-up lecture, Animesh Garg continues to explore compositional planning and multi-step reasoning, i.e. when a robot is supposed to do multiple tasks in a certain structure. He also examines robot perception via structured learning through instruction videos, and tackles the question of how to collect the data required for robot learning.

Generalizable Autonomy in Robot Manipulation

Part 1: In his first noteworthy lecture, Animesh Garg presents his vision of building intelligent robotic assistants that learn with the same amount of efficiency and generality than humans do through learning algorithms, particularly in robot manipulation. Humans learn through instruction or imitation and can adapt to new situations by drawing from experience. The goal is to have robotic systems recognize new objects in new environments autonomously (diversity) and enable them to do things they were not trained to do by using long-term reasoning (complexity).