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Example Cognitive Architectures

surveys:

Biologically Inspired Cognitive Architectures Society, Comparative Repository of Cognitive Architectures,
http://bicasociety.org/cogarch/architectures.htm (25 cognitive architectures)

A Survey of Cognitive and Agent Architectures, University of Michigan, http://ai.eecs.umich.edu/cogarch0/
(12 cognitive architectures)

W. Duch, R. J. Oentaryo, and M. Pasquier. “Cognitive Architectures: Where do we go from here?”, Proc.
Conf. Artificial General Intelligence, 122-136, 2008. (17 cognitive architectures)

D. Vernon, G. Metta, and G. Sandini, "A Survey of Artificial Cognitive Systems: Implications for the
Autonomous Development of Mental Capabilities in Computational Agents", IEEE Transactions on
Evolutionary Computation, Vol. 11, No. 2, pp. 151-180, 2007. (14 cognitive architectures)

D. Vernon, C. von Hofsten, and L. Fadiga. "A Roadmap for Cognitive Development in Humanoid Robots",
Cognitive Systems Monographs (COSMQS]), Vol. 11, Springer, 2010. Chapter 5 and Appendix |

(20 cognitive architectures)

‘ l. Kotseruba and J. Tsotsos. 40 years of cognitive architectures: core cognitive abilities and practical
applications. Artificial Intelligence Review, Vol. 53, No. 1, pp. 17-94, 2020. (84 cognitive architectures)
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Kotseruba and Tsotsos refer to these as Symbolic Architectures
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I. Kotseruba and J. Tsotsos. 40 years of cognitive architectures: core cognitive abilities and practical applications. Artificial Intelligence Review, Vol. 53, No. 1, pp. 17-94, 2020.
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I. Kotseruba and J. Tsotsos. 40 years of cognitive architectures:
core cognitive abilities and practical applications. Artificial
Intelligence Review, Vol. 53, No. 1, pp. 17-94, 2020.
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160 A Catalogue of Cognitive Architectures
A.1 Cognitivist Cognitive Architectures

A.1.1 The Soar Cognitive Architecture

The Soar system [211, 326, 220, 222] is Newell’s candidate for a Unified Theory
of Cognition [271] and, as such, it is an architypal cognitivist cognitive architecture
(as well as being an iconic one).It is a production (or rule-based) system! that op-
erates in a cyclic manner, with a production cycle and a decision cycle. It operates
as follows. First, all productions that match the contents of declarative (working)
memory fire. A production that fires may alter the state of declarative memory and
cause other productions to fire. This continues until no more productions fire. At
this point, the decision cycle begins in which a single action from several possible
actions is selected. The selection is based on stored action preferences. Thus, for
each decision cycle there may have been many production cycles. Productions in
Soar are low-level; that is to say, knowledge is encapsulated at a very small grain
size.

One important aspect of the decision process concerns a process known as uni-
versal sub-goaling. Since there is no guarantee that the action preferences will be
unambiguous or that they will lead to a unique action or indeed any action, the de-
cision cycle may lead to an ‘impasse’. If this happens, Soar sets up an new state
in a new problem space — sub-goaling — with the goal of resolving the impasse.
Resolving one impasse may cause others and the sub-goaling process continues. It
is assumed that degenerate cases can be dealt with (e.g. if all else fails, choose ran-
domly between two actions). Whenever an impasse is resolved, Soar creates a new
production rule which summarizes the processing that occurred in the sub-state in
solving the sub-goal. Thus, resolving an impasse alters the system super-state, i.e.
the state in which the impasse originally occurred. This change is called a result
and becomes the outcome of the production rule. The condition for the production
rule to fire is derived from a dependency analysis: finding what declarative memory
items matched in the course of determining the result. This change in state is a form
of learning and it is the only form that occurs in Soar, i.e. Soar only learns new
production rules. Since impasses occur often in Soar, learning is pervasive in Soar’s
operation.

1 A production is effectively an IF-THEN condition-action pair. A production system is a set
of production rules and a computational engine for interpreting or executing productions.

Cognitive Architectures
Winter Term 2020,/21
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I. Kotseruba and J. Tsotsos. 40 years of cognitive architectures: core cognitive abilities and practical applications. Artificial Intelligence Review, Vol. 53, No. 1, pp. 17-94, 2020.
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I. Kotseruba and J. Tsotsos. 40 years of cognitive architectures:

core cognitive abilities and practical applications. Artificial

Intelligence Review, Vol. 53, No. 1, pp. 17-94, 2020.

J. R. Anderson, D. Bothell, M. D. Byrne, S. Douglass C. Lebiere, Y. Qin.
An integrated theory of the mind. Psychol Rev 111(4):1036—-1060, 2004.
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I. Kotseruba and J. Tsotsos. 40 years of cognitive architectures:
core cognitive abilities and practical applications. Artificial
Intelligence Review, Vol. 53, No. 1, pp. 17-94, 2020.

162 A Catalogue of Cognitive Architectures

gﬁ AR Neurodynamics A.1.3 ACT-R — Adaptive Control of Thought - Rational

ST, The ACT-R [6, 7] cognitive architecture is a widely-regarded candidate for a unified ¢
theory of cognition. It focusses on modular decomposition and offers a theory of j ARoadmapfor
how these modules are integrated to produce coherent cognition. The architecture
SO comprises five specialized modules, each devoted to processing a different kind of
information (see Figure A.1). There is a vision module for determining the identity
and position of objects in the visual field, a manual module for controlling hands,
a declarative module for retrieving information from long-term information, and a
X goal module for keeping track of the internal state when solving a problem. Finally,
BECC, it also has a production system that coordinates the operation of the other four mod-
ules. It does this indirectly via four buffers into which each module places a limited | Fagiga. A Roadmap
LID@ amount of information. for Cognitive Development
RC in Humanoid Robots,
Cognitive Systems
Monographs (COSMOS),

Cognitive Development
in Humanoid Robots

D. Vernon, C. von Hofsten,

Vol. 11, Springer, 2010.

Co
MicroPsi
;ol Scheme

Productions

fhion Fig. A.1 The ACT-R Cognitive Architecture (from [7])

ACT-R operates in a cyclic manner in which the patterns of information held in
the buffers (and determined by external world and internal modules) are recognized,
NA S a single production fires, and the buffers are updated. It is assumed that this cycle
g%% s takes approximately 50 ms.

BBD There are two serial bottle-necks in ACT-R. One is that the content of any buffer

T T T T T T T
1975 1980 1985 1990 1995 2000 2005

T
2010

T
2015

ART is limited to a single declarative unit of knowledge, called a ‘chunk’. This implies
that only one memory can be retrieved at a time and indeed that a single object can
be encoded in the visual field at any one time. The second bottle-neck is that only
one production is selected to fire in any one cycle. This contrasts with both Soar and

Cognitive Architectures
Winter Term 2020,/21
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I. Kotseruba and J. Tsotsos. 40 years of cognitive architectures: core cognitive abilities and practical applications. Artificial Intelligence Review, Vol. 53, No. 1, pp. 17-94, 2020.
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I. Kotseruba and J. Tsotsos. 40 years of cognitive architectures:
core cognitive abilities and practical applications. Artificial
Intelligence Review, Vol. 53, No. 1, pp. 17-94, 2020.

R. Sun. Anatomy of the mind: exploring psychological mechanisms and
processes with the CLARION cognitive architecture. Oxford University
Press, Oxford. 2016

R. Sun. The CLARION Cognitive Architecture: Toward a Com-

prehensive Theory of the Mind. The Oxford Handbook of

Cognitive Science, S. Chipman (Ed.), 2017.

AD
ARS/SIMA

0JACK

i ug"

Og "
Mé?rszﬁ‘eme
DB

N it
Nogagne
MAMID
REM

B
:
Iz

§E3%
=2

o
S Eln]
>>0~ T

M= g

& )

4

<Cu39

L.

G)g()gOUm-<
0D

,_
>
T

FORR

T T T T T T T T
1975 1980 1985 1990 1995 2000 2005 2010

T
2015

CLARION

ACS | NACS

—

action—centered non-action—centered
explicit representation explicit representation

I o

action—centered implicit non-action—centered —
J— representsation implicit representation

.
! |
e | [ rontomemen

- filtering
drives selection
— regulation

[ v

MS MCS
Four sub-systems

ACS - Action-centred subsystem
NACS - Non-action-centred subsystem
MS - Mativational subsystem

MCS - meta-cognitive subsystem

el SN
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* Explicit symbolic top level

Implicit and explicit levels interact and cooperate both in
action selection and in learning
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I. Kotseruba and J. Tsotsos. 40 years of cognitive architectures:
core cognitive abilities and practical applications. Artificial
Intelligence Review, Vol. 53, No. 1, pp. 17-94, 2020.
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194 A Catalogue of Cognitive Architectures

A.3.6 The CLARION Cognitive Architecture

ACS I NACS

action-centered
explicit representation

-

action—centered implicit
representsation

non-action—centered
explicit representation

TLT;

non-action—centered
implicit representation

!

= .

[
L v
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drives

reinforcement I—J
goal setting

filtering
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Fig. A.10 The CLARION hybrid cognitive architecture (from [364]). ACS stand for the
action-centered subsystem, NACS for the non-action-centred subsystem, MS for the moti-
vational subsystem, and MCS for the meta-cognitive subsystem. All four subsystems have
two types of representation: implicit (connectionist) and explicit (symbolic).

CLARION [362, 363, 364] is an architypal hybrid cognitive architecture, deploy-
ing both connectionist and symbolic representations. It comprises four subsystems:

1. An action-centred subsystem (ACS);

2. A non-action-centred subsystem (NACS);
3. A motivational subsystem (MS);

4. A meta-cognitive subsystem (MCS).

All four subsystems have two levels of knowledge representation: an implicit con-
nectionist bottom level and an explicit symbolic top level. The implicit and explicit
levels interact and cooperate both in action selection and in learning.

The action-centred subsystem controls both external physical movements and
internal “mental” operations. Given some observational state, i.e. a set of sensory
features, the bottom level evaluates the desirability of all possible actions. The desir-
ability is learned by reinforcement learning using the Q-Learning algorithm [392].
At the same time, the top level identifies possible actions from a rule network, again
based on the observed sensory features. The bottom-level and top-level action are

COSMOS 11

R m—,

A Roadmap for

Cognitive Development
in Humanoid Robots

D. Vernon, C. von Hofsten,
and L. Fadiga. A Roadmap
for Cognitive Development
in Humanoid Robots,
Cognitive Systems
Monographs (COSMOS),
Vol. 11, Springer, 2010.
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1975 1980 1985 1990 1995 2000 2005 2010 2015 compared and the most appropriate top-level action is selected and executed. The
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We will now study one of these cognitive architectures in a little more detail
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core cognitive abilities and practical applications. Artificial
Intelligence Review, Vol. 53, No. 1, pp. 17-94, 2020.

K. Kawamura, S. M. Gordon, P. Ratanaswasd, E. Erdemir, and J. F. Hall.
Implementation of cognitive control for a humanoid robot. International
Journal of Humanoid Robotics, 5(4):547-586, 2008.
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Three memory systems

— Shortterm memory (STM]
— Long-term memory (LTM)]

— Working memory system [WMS]
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Cognitive behaviour is achieved through ( \ ooy 4 Z 77"
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Normally, the First-order Response Agent (FRA)
produces reactive responses to sensory triggers
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First-order Response Agent (FRA) |SAC
is also responsible for executing tasks
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It then places it in the Working Memory System

along with the current percept
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The Activator Agent then executes it, suspending |SAC
execution whenever a reactive response is required
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If the FRA finds no matching skill for the task, the ISAC
Central Executive Agent takes over
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Recalls from episodic memory past experiences and |SAC
behaviours that contain information similar to the
current task
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Select a behaviour-percept pair, |SAC
based on the current percept in the SES, its relevance,

and the likelihood of successful execution as

determined by internal simulation ™\
N N N

e N\
\; - aTaA ‘ Goals & )
\ Fsencory A | Attention Motivation I

Perceptual Network .
g:> — s N inention| |
Cognitive |
Control & |

NReﬂection
N I . |
First-Order [\ I Affect I
ng”:r:‘tse \ I|| central Agent |
] | | Executive |
Working I Agent AN |
/ . N\ Memory \ 1 |
Activator Agents < System i 1
Arm Agent Internal 1
‘ Rehearsal )
Head Agent A System A I
<::I Hand Agent 'I
4 S—
CE— -
N —. —
Long-Term Semantic ||Procedugal || Episodic
Memory Memory Memo Memory
~. 7
Cognitive Architectures Design & Implementation of Cognition-enabled Robot Agents

Winter Term 2020,/21 35



Yy | Artificial T . i
A\ Intelligence |U’ Universitat Bremen

A 4
\

This is then placed in working memory and the |SAC
Activator Agent executes the action
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Lecture Summary
1. There are in excess of 84 cognitive architectures

2. They can be classified as cognitivist, emergent, and hybrid

3. Cognitivist cognitive architectures are often referred to as symbolic cognitive
architectures

4. The most famous include Soar, ACT-R, and CLARION

0. The ISAC cognitive architecture was designed for cognitive robotics and
comprises most of the components one expects in a cognitive architecture

6. InISAC, task execution is handled either by the First Response Agent or by the
Central Executive Agent

Cognitive Architectures Design & Implementation of Cognition-enabled Robot Agents
Winter Term 2020,/21 37



Artificial

Intelligence Ll_JJ Universitat Bremen

Recommended Reading

. Kotseruba and J. Tsotsos. 40 years of cognitive architectures: core cognitive abilities and practical
applications. Artificial Intelligence Review, 2020

D. Vernon, C. von Hofsten, and L. Fadiga. "A Roadmap for Cognitive Development in Humanoid Robots",
Cognitive Systems Monographs (COSMOS), Vol. 11, Springer, 2010; Chapter 5 and Appendix A.
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Recommended Videos

J. Laird. Open Research and the Soar Cognitive Architecture.
https://www.youtube.com/watch?v=2pNsfBj7XSA&feature=youtu.be
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